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TOF Concept

®* A packet of ions is accelerated to a defined kinetic
energy and the time required to move through a fixed
distance is measured

® As KE = mv?/2 then lighter ions travel faster than
heavier ones - mass separation

® The greater the distance between source and detector
the smaller the mass difference that can be seen

(resolution)
Detector
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MASPEX performance
comparison

Cassini
MASPEX INMS

Storage source increases duty cycle to

~1009%, provides ~200,000 fons per ~ SeNSIVILY 5 55 5 gopg COUNtS/s per
i (Ny) particle/cm
extraction

Multi-bounce geometry enables variable  Resolution

path length increasing resolution m/Am 12,300 ~200 FWHM

Maximum mass limited by flight time not 1-8,
by field strength or frequency Mass range’ "1-1000 12-99 .
2000 source extractions per second, each Sl
: : ) spectrum
producing a spectrum, provides increased e 0.5 34 ms
: : e acquisition
spatial resolution and sensitivity :
time
Dual stage detector provides wide dynamic  Dynamic 109 108

range range



Resolution:
Multi-Bounce Time-of-Flight
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MASPEX Performance

Extended mass range for
heavy organic molecules

(>1000 u)

Enhanced mass resolution
for critical isotopes
(>10,000 m/Am)

Enhanced dynamic range for
high S/N (10°% in a 1s

period)

Improved sensitivity for rare s?,ume o _
noble gases - cﬁﬁmﬂfm
(>1ppt with cryotrap) I -

High throughput
SOO spectra/s)
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|sotopic determination In
complex volatile mixtures

® High mass resolution
mass spectrometry is

essential for H, C, N, and 1000
O isotope determination oo | 108ppm Prototype data exceeding
in c?mplex mi €<tu res so| | diference | [
con ainin wa er’ o requirem??tforsepgration
ammoniagmethane, and Foool | —
organic volatiles. Bl M
. 5400
* Shown here is the 2
determination of the H/D ool L\
ratio in water requiring a ool | M|
resolution of 12,300, N I
which takes 30 bounces 19.014 19.016 19.018 19.020 19.022

Mass

on the MBTOF.




High Sensitivity: Cryo-
trapping

—Blank
—Exp 1

® Argon over 5 sample sizesanda .| e
blank. - ] —

® The sample is held on the g f
adsorber to ~450 seconds Y,
® During this period the ion pump is
opened and a dip in the line would

indicate that some of the sample
remains unadsorbed 10

® The noisy trace seen hereis
because the RGA is at the limit of
Its sensitivity. . ,
0 500 1000 1500 2000 2500 3000

® The ion pump is then closed and Time (s)
the adsorber allowed to warm to
room temperature, during which
period the trapped sample is
evolved.

® After deducting the blank
contribution the samples fit the

calibration curve with an R2 value
of 0.99985 and indicate that the
adsorber is quantitative.
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Versatility

® QOpen source e MBTOF
® |ons e Extraction rate
® Reactive neutrals ® power / integration time

® Resolution
® selectivity / mass range

® (Closed source
e Ambient gas

o L
e Cryotrapped gas Integration time

® data rate / dynamic

® Increased sensitivity signals

e Purification (NEG)
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Formation: Hydrogen and
oxygen isotopes In water

103, ®* Oxygen isotopes in the solar

RC
] . 3000 system from McKeegan et al.
10ort Cloud comets + Enceladus 2000 [g OO 9]
| = + + + | 1000 '
1 + $ JFC o
e > ot " L ® Measurements of oxygen
c K | 40 B isotopes of water are virtually
S B ‘I | 400 non-existent in the outer solar
- e 00 system — the gray area
o Pooolr delineates out our present
o5 ov ambiguity.

TA007922

® D/H in the solar system taken
from Alexander et al.[2012].

® Tagish Lake is best chondritic
match to P and D type
asteroids that formed the
Galilean and Saturnian
satellites and also likely
represents the rocky fraction of
ometary materials. S o Biucabiali
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Astrobiological Studies

MARS ANALYTICAL
CHEMISTRY EXPERIMENT
(MACE)

PI: J. Hunter Waite
University of Michigan
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Studies of Interior
Processes

Enceladus
Cryo-Geyser

Cassini INMS
Neutral Mass Spectrum
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Tidal heating of the icy interior

Composition like a comet?



Atmospheric Chemistry and
Structure

Energetic
Particles

Sunlight

Molecular Nitrogen
and Methane
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Dissociation lonization
C,H,,CH,, C,H." HCNH"
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C4H3+, C4Hs+, HC3NH+

C3Hg, CaHg, CHCN

CeHg

CsH5?, H3C4N

Aerosol Monomers

Neutral Abundance

Titan
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After Waite et al, Science, 316 p. 870 (2007)



Meeting the Science
Requirements

ST E P 1 . A‘t maos p h ere Saturn Photochemical Model

AL BV B R e AL e L e s
del duced as th -' i
model produced as the Results for the Measurement of Ambient Gas at 0.5 bar
basis for estimating - S — ~ - ™ ~ o~
the MASPEX —
Exact Principal Molecular abun- Min required bounces
t Molecule Specific isotope mass isotope dance Mixing fraction acquisition time Target precision required
measuremen =
requirements. ¢ B
a H2 H. 2.0 P 0.895 0.895 <0.1 5% 0
§ H2 HH 3.0 2H 0.895 3.58E-5 <0.1 5% 4
o He *He 30  3He 0.1 4.64E-5 <0.1 10% 4
He “He 4.0 P 0.1 0.1 <0.1 5% 0
CH4 “CH, 16.0 P 0.005 0.005 <0.1 1% 0
ok CH4 "C'H, 17.0 13C 0.005 5.25E-5 1.7 1% [¢]
= | .
l ool cound vvod 3o vood o Dol vrotd o bkl 3l Sha o 7.0 2 0008 37267 o7 % 21
1 0—15 1 0—13 1 0—1 1 1 0-9 1 0-7 - N2 “N, 28.0 P 1.75E-6 1.74E-6 03 10% 3
Mole Fraction Ne “Ne 20.0 P 2.06E-4 1.92E-4 <0.1 10% 0
Ne =Ne 220  22Ne 2.06E-4 1.39E-5 0.2 10% o
NH3 UNTH, 17.0 P 1.39E-7 1.39E-7 7.7 10% 8
Ar *Ar 36.0 P 5.37E-6 1.81E-8 21.1 10% o
TOF Spectrum STE P 2 . S 2 I .t d Ar *Ar 380  38Ar 5.37E-6 3.41E-9 11.7 10% 0
T T T T - Imulate C2H6 “C,H, 30.0 P 3.34E-8 3.27E-8 2219.5 1% 3
M AS P Ex S peCt rum C2H6 “CPC'H, | 311 13C 3.34E-8 7.38E-10 98205 1% 16
t d . I b Kr oKr 79.9  80Kr 3.04E-9 6.89E-11 13948.3 10% 3
ge nerate usin g a Kr =Kr 81.9  82Kr 3.04E-9 3.51E-10 2734.5 10% o
I | ne s h a pes fro m our Kr wKr 829  83Kr 3.04E-9 3.49E-10 2748.1 10% 0

Kr “Kr 83.9

mass spectrometer = w e STEP 3: Spreadsheet program
combined with NIST = = o developed to determine mass

Xe ' Xe 128.9

fragmentation and » - e resolution and measurement
ionization data, and . e me time needed to satisfy the RFI

Xe ™ Xe 133.9

solar isotopic - e 1ms requirements and thus generate
abliiidance a realistic operational scenario.
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Summary

MASPEX has a long history of development from
internal and, more recently, external sources

‘Mars AVNALYTICAL The Great Escape (TGE) 4 A B P.rimitive M‘aterial Explorer_
- CHEMISTRY PERIMENT A High Return, Low Risk Mars Scout | l
“A Major Advance is in the Air” 4

First Mission to Explain &im  (PriME)
the Role of Comets = U ~..
-in Delivering Volatiles * | 0y

- to Earth

NASA’s funding of the PriME Technology
Development and ICEE program demonstrate
NASA’s confidence to the development of MASPEX



